
 
 

 

Abstract— Exploring planetary surfaces typically involves 
traversing challenging and unknown terrain and acquiring in-
situ measurements at designated locations using arm-mounted 
instruments. We present field results for a new 
implementation of an autonomous capability that enables a 
rover to traverse and precisely place an arm-mounted 
instrument on remote targets.  Using point-and-click mouse 
commands, a scientist designates targets in the initial imagery 
acquired from the rover’s mast cameras.  The rover then 
autonomously traverses the rocky terrain for a distance of 10 
– 15 m, tracks the target(s) of interest during the traverse, 
positions itself for approaching the target, and then precisely 
places an arm-mounted instrument within 2-3 cm from the 
originally designated target.  The rover proceeds to acquire 
science measurements with the instrument.  This work 
advances what has been previously developed and integrated 
on the Mars Exploration Rovers by using algorithms that are 
capable of traversing more rock-dense terrains, enabling tight 
thread-the-needle maneuvers. We integrated these algorithms 
on the newly refurbished Athena Mars research rover and 
fielded them in the JPL Mars Yard.  We conducted 43 runs 
with targets at distances ranging from 5 m to 15 m and 
achieved a success rate of 93% for placement of the 
instrument within 2-3 cm.     

I. INTRODUCTION 

INTEREST in planetary rovers conducting an 
autonomous traverse followed by  precise placement of 
arm-mounted instruments dates back to the first Martian 

rover: the Sojourner rover, which landed on Mars in 1997.  
This capability enables scientists to collect measurements 
from targets that they can designate remotely. These targets 
would typically fall within 10 – 20 m from the rover1.  The 
scientist would then triage these targets and revisit sites of 
high potential science return.   

Operational scenarios used on the Mars Exploration 
Rovers (MER) require a total of three to four sols (Martian 
days) for each target measurement.  This autonomous 

 
Manuscript received February 8, 2011.  This work was performed at the 
Jet Propulsion Laboratory, California Institute of Technology, under a 
contract with the National Aeronautics and Space Administration. This 
work is supported by the NASA Mars Technology Program.  

M. Fleder conducted this work while at the Jet Propulsion Laboratory, 
Pasadena, CA (email: mfleder@mit.edu) 

I. Nesnas is with the Jet Propulsion Laboratory, Pasadena, CA. (email: 
Issa.A.Nesnas@jpl.nasa.gov)  

M. Pivtoraiko is with Carnegie Mellon University, Pittsburgh, 
Pennsylvania. (email: mihail@cs.cmu.edu) 

A. Kelly is with Carnegie Mellon University, Pittsburgh, Pennsylvania. 
(email: alonzo@cmu.edu) 

 
1 Target distance is primarily limited by the resolution of the imagery 

used for the target selection and the required precision for the final 
instrument placement.  

capability would reduce this operational time to a single 
sol, thus increasing the overall science return for the 
mission [1].  When visiting multiple targets, the reduction 
in the number of sols would reach an order of magnitude. 
 To provide this capability, we developed and adapted a 
number of sensing and control algorithms and integrated 
them on the Athena research rover. For a robust 
implementation, we had to address a number of challenges 
including terrain variability, sensing limitations, lighting 
variations, and traverse challenges.  Because the rover is 
capable of traversing over small rocks, analyzing terrain 
traversability and handling the highly-variable 
wheel/rock/soil traction requires careful consideration. 
Figure 1 shows a typical terrain that we used in our testing, 
where the rover would overcome rocks smaller than a 
wheel diameter.  For MER, the traversable obstacle had to 
be less than 20 cm in height, the equivalent of 80% wheel 
diameter. Only the final placement patch was chosen to be 
relatively free of obstacles to minimize rover slippage as 
the center-of-mass shifts during instrument placement.  By 
using a rover prototype in the JPL Mars Yard, we tried to 
mimic the subtle conditions that would arise in an 
environment similar to that encountered on Mars.  

A. Related Work 

Motion planning and control of mobile manipulator 
systems have received significant attention over the past 
several decades. Even though our work shares some of the 
motivations with the general topic of mobile manipulation, 
the need for determinism coupled with the limited available 
sensing and computational resources on-board planetary 
rovers preclude the use of many sampling-based 
approaches that are commonly used in mobile 
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Figure 1: The Athena Mars Research Rover in the JPL Mars Yard 



 
 

manipulation.  A variety of field robotics applications, such 
as planetary exploration considered here, admit 
representations of low enough dimensionality that 
deterministic approaches can be applied directly. The 
present work can be viewed as a result in leveraging this 
property to design an efficient fielded system. 

The autonomous capabilities of planetary rovers have 
continued to increase with each rover deployment on the 
Red planet.  Back in 1997, the Sojourner rover achieved the 
first autonomous rover traverse on another planet. 
However, this autonomous capability was limited.  The 
hazard avoidance system used laser stripes with a camera 
system to detect rocks and determine contour lines [2]. By 
repeating this process at small, three-inch increments, the 
rover was able to build sparse terrain maps and avoid 
obstacles.  Using the above rock detection algorithm, 
engineers were able to command the rover to position itself 
in front of designated rocks.  These capabilities were 
exercised over distances of only a few meters.     
 In 2004, the Jet Propulsion Laboratory landed two more 
capable rovers on the opposite side of Mars.  Both Spirit 
and Opportunity enjoyed a greater level of sensing and 
compute capabilities compared to their Sojourner 
predecessor.  Each rover had a suite of stereoscopic 
cameras: front and rear camera pairs with wide field-of-
view (FOV) lenses for hazard avoidance (“hazcams”).  
Each rover also carried an articulated mast head with two 
stereo camera pairs with both wide and narrow FOV 
camera pairs (“navcams” and “pancams”).  These rovers 
were designed to traverse longer distances than their 
predecessor. To date, the Spirit and Opportunity rovers 
have logged a combined 30.5 km on the Martian surface 
[3]. A sixth of this traverse distance was accomplished with 
some level of autonomy for hazard detection and 
avoidance.  The rovers would either use active obstacle 
detection and avoidance or employ hazard detection only to 
affirm the safe traversal of a predefined rover path. Unlike 
the Sojourner rover that used laser stripes for generating 
terrain maps, the Mars Exploration Rovers generated three-
dimensional maps using dense stereo at quarter resolution 
from their hazcams.  Then, they used goodness maps to 
assess terrain traversability.  Using their autonomous 
navigation capability, the MER rovers demonstrated, one 
time, a 6m autonomous traverse and precise placement [1]. 
While this marks another major milestone in autonomous 
capabilities for planetary rovers, the execution of this 
capability was done in a relatively benign environment and 
without any obstacles in the path of the rover2.   
 In addition to these developments on flight missions, 
active research in the autonomous traverse and instrument 
placement for planetary rovers was on-going at several 
institutions over the past decade.  Early work focused on 
instrument placement for single and multiple rock targets 
from a distance of 3-5 m [4].  This work was demonstrated 
on the Rocky 7 research rover [5] on fairly benign terrain 
and had a final instrument-placement precision on the order 
 

2 Hardware limitations on the rovers have limited further utilization of 
this capability as of this writing. 

of 5-10 cm.  Planning and execution for such tasks has been 
investigated at LAAS-CNRS [6].  Work by Pedersen et al. 
[7] demonstrated multiple-target single cycle instrument 
placement in terrains with only a few obstacles. 

B. State-of-the-Art 

To acquire measurements with the Spirit and Opportunity 
rovers at designated targets, MER scientists and operators 
spend a significant amount of time carefully planning and 
preparing a sequence of rover steps to (i) traverse and 
position the rover relative to the target (ii) verify a 
collision-free path for the arm and (iii) deploy and orient 
the instrument on the target to acquire measurements.  
When a rover is within 10 – 20 m from the designated 
target, it typically spends one or two sols navigating to a 
nearby location and positioning itself for the final approach 
to the target.  Then it approaches the target such that it is 
within the arm’s workspace with a high manipulability 
index [8].  After completing the final approach, the third sol 
will deploy the arm and acquire a measurement.  Each sol 
requires significant human oversight and control.  Were the 
rovers able to navigate to targets and take measurements 
autonomously—human input only for target(s) selection—
the speedup for taking certain kinds of measurements 
would increase by at least three fold for a single 
measurement and an order of magnitude for multiple targets 
in a single sol. 

C.  Challenges Addressed 

This work builds upon and extends prior work done by 
members of this team, other researchers at JPL[1][4][9], 
and researchers at Ames Research Center [7].  Our work 
focuses on advances to motion planning and terrain analysis 
for addressing the challenges of environments with denser 
rock distributions.  For instance, in very rocky 
environments the rover often needs to execute tight 
maneuvers with small clearances between rocks such as in 
“threading the needle” between multiple obstacles.  Such a 
capability is not available on the Mars Exploration Rovers: 
they always maintain a safe clearance for an in-place turn 
since their path planners require more obstacle clearance 
than [10].  Furthermore, we address situations that require 
the rover to traverse over small to medium-sized rocks (up 
to a wheel diameter in height) where such traversals result 
in rover undulations and tilts of the mast of about 15-30.  
Maintaining 2-3 cm precision on the final instrument 
placement – after autonomously traversing terrain with 
highly-variable wheel/rock traction – requires constant 
tracking of the target during the traverse.  Such precision 
also becomes difficult as the target’s size and appearance 
changes drastically as the rover closes in on the target.  We 
address all these challenges within the computational 
constraints of radiation-hardened processors and image 
acquisition systems of planetary rovers. To the best of our 
knowledge, prior work did not address such challenging 
rover traverses followed by precise instrument placement. 
 To address the traverse challenge, we adapted and 
integrated a new continuous-curvature path-planning 
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number of points is captured in the certainty (of 
goodness) measure used in our algorithm.  

To address these sensitivities, we added hysteresis to our 
goodness map calculation.  More specifically, we bound 
the rate at which the goodness measure of a cell can 
increase to 5% but did not bound the rate at which it can 
decrease.  This causes the rover to be cautious about 
terrain that previously had a low traversability in recent 
steps but suddenly appears more benign.  

V. MOTION PLANNING 

While dual local and global planners have been fielded 
extensively in robot navigation, we opted for a single, 
multi-resolution motion planner.  Dual planner methods are 
currently in use by the Spirit and Opportunity rovers on 
Mars.  Even though such methods are computationally fast 
and perform very well in benign to medium-difficulty 
terrains, they have been noted to struggle in complex 
natural environments with very rocky terrain.  The reasons 
for these difficulties stem from the dual-nature of the 
planning component. Involving two separate planners to 
accomplish the global and local planning task requires 
explicit methods of integrating the planners and getting 
them to agree on compatible notions of costs of motions 
through the environment.  Moreover, there are often 
representational differences between the two planners, as it 
is typical for the local planner to satisfy the model of robot 
motion, e.g., differential constraints, and for the global 
planner to disregard them entirely for the sake of efficiency. 
These differences may result in conflicted behavior when 
the constraints of robot motion are most pronounced: e.g., 
aggressive maneuvering in difficult terrain.  Furthermore, 
local planners in this setting typically draw from a small set 
of arc motions, for the sake of efficiency. This simplified 
design operates in a reactive manner by picking a motion 
that is the best fit.  Unfortunately, a small, limited set of 
possible motions is often a poor representation of the 
overall vehicle mobility.  Furthermore, many motion 
planners, including those used by the MER rovers, utilize 
configuration space expansions that result in excessive 
obstacle clearance that is related to the size of the vehicle 
footprint as it were to perform a turn in place.  While this is 
reasonable for robots of nearly circular shape, this can be 
restricting for robots with elongated footprints, especially 
as the terrain gets denser with obstacles. In order to address 
the above difficulties, we explored alternative methods of 
planning.  We investigated the use of a state lattice motion 
planner[10]. The planner generates motion trajectories with 
continuous curvature that maneuver through dense rock 
distributions.  This requires the rover to drive and steer 
simultaneously.  While this capability is not available in 
today’s flight rovers due to power limitations, it is available 
on the research rover prototypes.  

The planner is configured to plan aggressive paths 
through regions that would be too difficult for the current 

MER planner.  Generated rover motions are represented as 
cubic splines. It is important for the motion planner to be 
able to choose among most, if not all, feasible paths (the 
paths the rover is capable of executing).  Paths featuring 
continuous steering have a greater expressive capacity and 
can approximate a larger collection of the feasible paths 
than paths that are constrained to discrete steering, e.g., 
consisting of constant-curvature arcs.  A rendering of a 
linear-approximation to a path generated by the planner is 
shown in Figure 5.  Because the lattice planner supports 
paths across different fidelity of representation, it is 
scalable over long distances and can simultaneously reason 
at local and global scales.  Thereby, we obtain the 
computational benefits of the dual local-global planners, 
while avoiding the challenges of their different 
representations and separate processes [10]. 

A.  Search space and algorithm 

Our motion planner consists of two primary components: 
the search space that represents the feasible motions of the 
rover and the search algorithm that evaluates these motions 
and selects the one for the rover to follow. The goal of the 
planner is to select the motion that is optimal with respect 
to the relevant measures of motion quality.  In the presented 
implementation, the search algorithm was D* Lite[13] that 
was modified to allow graduated fidelity planning, as 
described further in Section V-B. The algorithm sought to 
minimize path length.  The search space was a state lattice, 
a directed graph that consisted of (i) vertices, pre-defined 
regular state samples, and (ii) edges, pre-computed motions 
connecting the above state samples.  We sampled a three-
dimensional state space, consisting of 2D position and 
heading. The motions were steering functions computed by 
the boundary value problem solver in [14]. The motions 
were represented as cubic polynomial curvature functions 
of path length.  

 
Figure 5: Goodness map and linear-approximation to rover path (splines 

not shown).  The path terminates at the target. 
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of target (ii) reacquires the image and (iii) re-attempts 
tracking.  The tracker can lose the target for up to two 
consecutive steps.  A third tracking failure results in the 
rover stopping, declaring a fault, and calling home for help 
from the operator to confirm the target location. 

VII.   EXPERIMENTAL RESULTS 

We adapted and integrated all these algorithms on the 
Athena rover and tested the system in the JPL Mars Yard. 
The Athena rover measures 1 m length by 0.8 m in width 
and stands 1 m off the ground.  We conducted 43 runs of 
the “traverse and precisely place instrument on target” 
under different lighting conditions (early morning, noon 
and afternoon) and terrain topographies (different rock 
distributions).  A typical, challenging terrain is shown in 
Figures 1 and 8, which had rocks and boulders varying in 
size from 7 cm to 0.5 m in radius.  Twenty eight tests were 
conducted with the target selection being 3-5m away.  
Fifteen of the tests put the target 10 m away.  The 15 long-
range tests all involved at least one major obstacle in the 
straight-line path to the target (see Figure 5).  The rover had 
a 93.33% success rate.  Failures were all attributed to 
tracking failure.  Failures were graceful however.  For 
example, in a typical failed test run, the rover failed to track 
the target (despite the recovery mode).  The tracker 
declared a fault and called “home” for help from the 
operator to confirm the target location.  Once we reselected 
the target, the rover continued successfully.  The terrain 
conditions were such that the optimal path required the 
rover to incur the maximum change in azimuth (and 
therefore stress the tracker significantly).  We show a 
typical iteration of target tracking in Figure 6. 
 In several test cases, it was not apparent from the initial 
images whether or not a feasible path to the goal existed.  
In those cases, the rover determined a feasible path’s 
existence after several move-sense iterations.  We focused 
our test cases on targets that can be approached from the 
visible side of the rock because more complex scenarios 
that would require the rover to approach the target from 
behind the rock are very unlikely to be considered in an 
actual mission due to its higher risk.. 

 The locations of (i) the predicted target pixel and (ii) the 
tracked target pixel differed on average by 22.48 pixels 
with a standard deviation of 30.4 pixels.  This average 
target-pixel-prediction error can be used as a rough 
measurement of the accuracy of several of subsystems.  The 
predicted target pixel is based on (i) last rover pose (ii) 
predicted rover pose after moving (iii) accurate pointing of 
the cameras (to point at the predicted 3-D location of the 
target before acquiring an image for tracking).  Since 96% 
of the tracked-targets pixels were within 174 pixels of the 
predicted-target pixels, we safely used a tracking search 
window of 200 x 200 pixels.  
  The placement of rocks that were obstacles (as 
opposed to traversable rocks) was challenging enough to 
require the rover to come within 8–12 cm of significant 
boulders.  The rover did so without collision as a result of 
the aggressive paths provided by the planner.  Using this 
path planner, we demonstrated that (a) we can move 
precisely through tough terrain and (b) we can compute 
these precise paths quickly; the re-planning time took less 
than 1 second on all runs.  The rover’s movement through 
rocky terrain in the JPL Mars Yard resulted in zero 
collisions over the course of the test runs. The combination 
of the terrain analyzer and path planner has resulted in 
aggressive but safe traverses.  The terrain analyzer is 
precise enough that we plan paths (i) without a 
configuration space expansion and (ii) with only a minor 
buffer space around obstacles.  The final placement 
accuracy was measured to be within 3 – 5 cm of the 
initially selected target.  

VIII. CONCLUSION 

In this paper, we have presented a fully autonomous 
“traverse then precisely place an instrument on target" 
capability for planetary rovers. We have successfully 
demonstrated this capability on the Athena research rover 
in the rocky outdoor terrain of the JPL Mars Yard.  To 
enable the rover to traverse rock-dense terrains, we 
modified the navigation system to handle tight rover 
maneuvers around rocks.  We extended the traversability 
analyzer and integrated it with the Lattice motion planner, 
which generates continuous curvature paths maneuvering 
within 8-12 cm of obstacles without collision.   

Our preliminary results showed good promise of the 
potential of this level of autonomy for future planetary 
exploration.   While we made several enhancements to the 
overall reliability, additional validation under different 
terrain and lighting conditions would still be warranted.  A 
more detailed error budget on final placement would need 
to be assessed; and the traverse of challenging terrain 
would need to be further validated for future consideration 
into a flight mission.  

This level of autonomy would have significant impact on 
the science return when multiple targets could be assessed 
in a single sol.  Compared to state-of-the-art planetary 
operations, the saving could amount to an order of 
magnitude reduction in the number of sols.  However, this 

 
Figure 8: Expanded view of tracking 



 
 

technology would need to be assessed relative to available 
on-board instruments and the time that they would need to 
acquire and process their measurements.  
 Future work would include demonstrating autonomous 
instrument placement on multiple targets on rocky and 
sloped terrains.  Several components of this capability are 
being considered for the Mars Science Laboratory mission 
and the entire system could be integrated onto the proposed 
joint NASA/ESA ExoMars mission currently planned for 
2018.  
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